Fusion proteins containing family 1 and family 2 PspA fragments elicit protection against Streptococcus pneumoniae that correlates with antibody-mediated enhancement of complement deposition.
نویسندگان
چکیده
PspA is an important pneumococcal vaccine candidate that is capable of inducing protection in different animal models. Because of its structural diversity, a PspA-based vaccine should contain at least one fragment from each of the two major families (1 and 2) in order to elicit broader protection. In the present work, we have tested the potential of PspA hybrids containing fused portions of family 1 and 2 (PspA1ABC-4B and PspA1ABC-3AB) PspA fragments to induce protection against pneumococci bearing distinct PspA fragments. Sera from mice immunized with these hybrid PspA fragments were able to increase C3 deposition on pneumococci bearing PspA fragments from both families, in contrast with sera made against the PspA family 1 (PspA1ABC) and PspA family 2 (PspA3ABC) fragments, which were effective only within the same family. Although PspA hybrids were able to extend protection against pneumococcal infection with strains bearing diverse PspA fragments, the immunity elicited by family 2 was clade dependent, suggesting that PspA fragments from family 2 clades 3 and 4 should both be included in a comprehensive PspA vaccine. These results indicate that PspA fusion proteins constitute an efficient immunization strategy for future PspA-based antipneumococcal vaccines since they are able to extend protection provided by a protein derived from a single transcript.
منابع مشابه
Regions of PspA/EF3296 best able to elicit protection against Streptococcus pneumoniae in a murine infection model.
Pneumococcal surface protein A (PspA) can elicit protection against Streptococcus pneumoniae in mouse infection models. PspA is classified by serology and amino acid sequence into two major families that are divided by sequence into five clades. The most variable portion of the molecule is the alpha-helical domain, which comprises the N-terminal half of PspA. Prior studies of a family 1 PspA pr...
متن کاملCharacterization of Protective Immune Responses Induced by Pneumococcal Surface Protein A in Fusion with Pneumolysin Derivatives
Pneumococcal surface protein A (PspA) and Pneumolysin derivatives (Pds) are important vaccine candidates, which can confer protection in different models of pneumococcal infection. Furthermore, the combination of these two proteins was able to increase protection against pneumococcal sepsis in mice. The present study investigated the potential of hybrid proteins generated by genetic fusion of P...
متن کاملAnalysis of serum cross-reactivity and cross-protection elicited by immunization with DNA vaccines against Streptococcus pneumoniae expressing PspA fragments from different clades.
Streptococcus pneumoniae is a major cause of disease, especially in developing countries, and cost-effective alternatives to the currently licensed vaccines are needed. We constructed DNA vaccines based on pneumococcal surface protein A (PspA), an antigen shown to induce protection against pneumococcal bacteremia. PspA fragments can be divided into three families, which can be subdivided into s...
متن کاملRelative roles of genetic background and variation in PspA in the ability of antibodies to PspA to protect against capsular type 3 and 4 strains of Streptococcus pneumoniae.
Pneumococcal surface protein A (PspA) is able to elicit antibodies in mice and humans that can protect mice against fatal infection with Streptococcus pneumoniae. It has been observed that immunization with a single family 1 PspA can protect mice against infections with capsular type 3 or 6B strains expressing PspA family 1 or 2. However, several studies have shown that immunity to PspA is less...
متن کاملGenetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae.
The Streptococcus pneumoniae capsular polysaccharides and pneumococcal surface protein A (PspA) are major determinants of virulence that are antigenically variable and capable of eliciting protective immune responses. By genetically switching the pspA genes of the capsule type 2 strain D39 and the capsule type 3 strain WU2, we showed that the different abilities of antibody to PspA to protect a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 75 12 شماره
صفحات -
تاریخ انتشار 2007